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ABSTRACT:

The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev
approximations of first order operators is considered in both one and two dimensions. In
one dimension a preconditioner represented by a full matirx which leads to preconditioned
eigenvalues that are real, positive and lie between 1 and 7/2, is already available. Since
there are cases in which it is not computationally convenient to work with such a
preconditioner, we study a large number of preconditioners which are "more sparse” (in
particular three and four diagonal matrices). The eigenvalues of such preconditioned
matrices are compared. In particular, the analysis is carried out for the quantity
max | M|/min|)il, where ), are the preconditioned eigenvalues.

We apply the results to the problem of finding the steady state solution to an
equation of the type u = u, + f, where Chebyshev collocation is used for the spatial
variable and time discretization is performed by the Richardson method.

In two dimensions different preconditioners are proposed for the matrix which arises
from the pseudo-spectral discretization of the steady state problem in the square

A = {(xy,): - 1sx€1, -1¢y<l}
U, + Uy =f
U, y, 0) = U
with boundary conditions at x = 1 and y = 1. Results are given for the CPU time and
the number of iterations using a Richardson iteration method for the unpreconditioned

and preconditioned cases.
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1. INTRODUCTION
To obtain the pseudo-spectral or collocation approximation let Py be an interpolation
operator. Let f(x) be a sufficiently smooth function defined in [-1,1] where f(x)=0 at the
Then Pyf is the

appropriate boundaries which yields a well-posed problem for (1.1).

interpolation of f at the collocation points X5 ie.
PNf(xj) = f(xj) and PyfeBy. j =0..N
To obtain a Chebyshev Gauss-Lobatto pseudo-spectal approximation in the interval

cos ja/N (j = 0,.,N), which when j # O,N are the extrema of the
In order to construct the

[-1,1] we choose X =

Nt order Chebyshev polynomials Tyx) = cos(N cos'lx).

interpolant of f(x) at x, we define the polynomials

(1- )T )(-1) *1
G = 0,..N)

gj(X) = —
chz(x - xj)

(15j€N-1).

G =cy=2 =1

One can easily see that gj(xk) = Sjk.
The N degree interpolation polynomial Pyf to f is given by

N .
Pf(x) = X f(xj)gj(x) xeR
j=0

(1.8)
We must now be able to express derivatives of Pyf in terms of f at the collocation
points x i Differentiating (1.8) we obtain
d“PNf(x) N gn
(1.9) = ¥ f(xj) g®
dx® j=0 dx®
so that
d"Pyf(x, ) N
(1.10) =X f(xj) (Dn)kj
dx" j=0



where
n

(1.11) O = —— 5®
jk dx k x:xj

The pseudo-spectral Chebyshev derivative operator can be represented by the N x N

mat[iX Sn = [Slj}’

where
¢ (- 1ik
Sjk R — k #j)
ck(xj - Xy
. " Xj 2NZ%+ 1
-y = —_—, SOO = —— = -SNN
! 201 - x2) 6

In particular the Chebyshev pseudo-spectral approximation for u, = u, ux0)=uyx)

N
is given by uy = ¥ u(x,t)g(x) and
AT

Buy N
— (x,8) = I ux;,t)s,. .
at (x] st) o ." kJ



2. OUTLINE OF THE PROBLEM

In the interval [-1,1] let

2j-1
E. = cos

n j = 1,2,...N
j 5N ] )

Ej lies between X; and X

The modes X; and Ej have the following properties:
Ty(E) = 0 i = L.N, and Tyx) = (-1)' i = 0,..N
Then consider the pseudo-spectral Chebyshev derivative operator with homogeneous
boundary conditions at x = 1. This operator can be represented by the N x N matrix

Sy = {sij}, where

2NZ% + 1 L
—_— ifi=j=N
6
ECVAL
Sy={ —— if i #j
G x;- xp)
-xj
ifi=j=1,.,N-1
L 20~ 1D t=

The matrix Sy is full. The condition number C(Sy) of Sy is large. We have the
following result which was obtained by Daniele Funaro.
Lemma 1-1: The condition number of Sy increases at least like N2,

Proof: Let §-1 denote the norm in EL(RNRN). Then the condition number
of Sy is given by

@21 oSy = ISyt ISt .
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It is known that IS I3p(S\)2C,N2, where p(S,) is the spectral radius of S,, and
N NIZ4 N P N

¢ is a constant independent of N. On the other hand, we have

(22) ISy = sup WS lgipN.
ol =1
, ? RN
Choose ¢, = [—,., —— |- Then “‘Ponmf 1 and (Sy ‘Po)j = ———(xj - 1), for
N VN VN

j = 1,.,N. Furthermore,

™Mz

R 1 n_ 1 ¢l
(2.3) 1S Mo, * - 12 - > = J' x - 1% wix = ¢,

R Wk N n

-1

where ¢, does not depend on N.

This implies HS&IKZNSE,IQOHRN%Z. Finally, using (2.1), we get C(SN)>C3N2. This
proves the claim.

Although the condition number is particularly meaningful for numerical applications,
its determination is generally very difficult. Another quantity which is meaningful for
practical application is o(M) = mz;xlxillmiinlxil where M is an N x N matrix and ),
1 = L..,N are its eigenvalues. It can be shown empirically that o(Sy) behaves like N.

We are interested in finding a “preconditioner” for S,. In particular we are
concerned with finding a matrix Ry such that the quantitity O(Ri\,ISN) is small. In
general this does not imply that the corresponding condition number will be small (so the
word "preconditioner'; is not correct).

In [DF ] Sy is preconditioned by Ry = Z Dy where the N x N matrix Dy = {dij}
is defined by

d; = -UE;;-x) i=1.N

i1 = Y(x;;- %) i=2.N

d. =0 otherwise
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Hence D is the upwind finite differences matrix relative to the grid x;. ZyPy Py is
the operator which maps the values of a polynomial in Py, at the staggered grid points
{il,...,gN} into the values at the mesh points {xl,...,xN}.

Preconditioning by ZDy results in preconditioned eigenvalues that are real, positive
and lie between 1 and n/2. The ratio o(DhIZiIISN) is bounded by n/2 (see \[DF]).
This is particularly interesting when the solution of the system

(2.4) Su+f=20

has to be found. If an iterative method is used, iterating My = (ZNDN)'ISN instead of
Sy results in convergence in a few iterations. In the end of the computation the system
(Z\Dy)u + f = 0 has to be solved. So we require that the matrix Ry = ZyDy can be
inverted easily. Although Z is a full matrix, it can be inverted very inexpensively in N
log N operations. Thus the matrix Ry = ZDy can be inverted very inexpensively.
Nevertheless there are cases in which it is not computationally convenient to work with a

full preconditioner.

In particular when using an implicit method to find the solution at time T > 0 of

the equation

u = Su + f,
(2.5) u(x,0) = uyx),

u(Lt)

]
o
=)
n
Lol
"
=~

If the implicit Euler method is used, iterates of the matrix (I + AtSy) are considered. A
good preconditioner for this matrix turns out to be the matrix (I + BtZ Dyy)-
Unfortunately, due to the fact that Zy is a full matrix, (I + AtZDy) cannot be inverted
inexpensively. In this work we shall present a large number of preconditioners which can

be applied to the situations illustrated above.



3. ANALYSIS IN ONE DIMENSION

In order to have the matrix I+AtZ D, which can be easily inverted we substitute
Z, by some suitable matrix which has a simpler form and which has to be regarded as
an approximation of the operator related to Zy.

~

The first idea is the following. Take Zy = {Z;;} such that

(3.1 Z; =5
zii+l =5
Zyw = 1L

Then ZyDy is a tridiagonal matrix so tha I+ At Z\Dy is also a tridiagonal matrix. It

can be shown that the eigenvalues of My = (ZNDN)‘ISN take the following form.

Thus, the eigenvalues of the preconditioned matrix are real and positive. Hence we
have o(My) = N. The choice of ZN as in (3.1) corresponds to shifting the values from
the staggered mesh to the initial mesh by averaging the two neighbour values. Instead of
this we can choose EN = {Eij} corresponding to interpolation by first order polynomials.

This leads to the following definition of the matrix Zy = {Zij}

il .
zg = ——— i= 1.,N-1
§i - §i+1
Zig = ———— i =1..N-1
i+ 1 §l+l - El

We found emperically, that the eigenvalues of the preconditioned matrix are still real and
positive, but the quantity o(MN) is now worse than that of the previous case.

Another simple preconditioner which this time is not of the form Z Dy, is defined



by Ry = {rij} where
I = 0 i=1,.,N-1

N = Vg - Xy)

(33) i = V(g - Xyq) i=1..N-1

= 2,.,N-1

Tiq = Vg - %)

N = Vg - Xy

In this case we still get real and positive preconditioned eigenvalues. Namely, they take

the form:

N = ———— k = L.N-1{U{)},

where X\ is approximately equal to 246. We have o(M,) = N-1. This is the best we
tested using tridiagonal preconditioners. Up to now the improvements are poor so we
have to consider better approximations of the matrix Zy

We consider an approximation of the operator related to Zy by interpolation with a

~

polynomial of degree 2. One possible choice is the following: Z = {E'ij} where

- ~

in

Zyp = (Xl - El)/(EZ - El)

(Xl = 52)/(51 - Ez)

2i,i-l = (Xi - i[)(xl - Eifl)/((ﬁi_l - gi)(gi-l - ii"'l)) i=2.,N-1
(3-4) gii = (Xl - Ei-l)()g - §i+1)/((§i - §i-1)(§i - §i+1)) i=2,,N1

PN

Zite1 = (&g - &G - (R - 8 - &) i=2,N-1

2N,N-l = (xy - §/ENg - &

L Za = Gy - )y - 3%8))

~ -~

Now Z is a three-diagonal matrix, hence ZD is a four-diagonal matrix. The numerical

experiments performed up to N = 32 give the following results. The eigenvalues X\ of
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~

My = (ZNDN)’ISN are in general complex. The have positive real part greater than .98,

Most of them are concentrated at 1. Figure 3.1 shows the behavior of the )\'s for N =

12 and N = 20.
imx § imA °
o o]
o
fe) [}
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o
o
o o
(o]

Figure 3.1 - Location of the preconditioned eigenvalues in the complex plane.

The corresponding o(My) is represented in Table 3.1 for various N. This time

o(My) is bounded with respect to N.

N o(Myp)

R

16 2.724 ‘
24 2758

R 2.770

Table 3.1 - Case of Four-diagonal preconditioner
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~

Other possibilities for the tridiagonal matrix Z were tested. For example one

-~

possible choice, analogous to that of the matrix in (3.1), is to take Zy = {gij} such that

Ziiq = 18
(3.5) z; = 3/4
Ziy = 38

Among all the experiments, the matrix proposed in (3.4) gives the best results.
Five-diagonal preconditioners were tested, through interpolation by third degree polynomials.
The results do not imporve those corresponding to Table 3.1.

Now, if the system of linear equations (1.5) is solved, for example, by the implicit

Richardson method, we are concerned with o(My), where My, = (I + At ZNDN)'l(I + At S

~

N)

and Z,; is the matrix in (3.4). The graph of o(My) versus At is reported in Figure 2.2
for some values of N. So, in addition to the fast convergence of the iterative scheme,

the preconditioning matrix can be inverted efficiently.

]

| ST

L]
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W

Figure 3.2

ot
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Now, if the steady state solution of problem (2.5) has to be found (which
corresponds to the solution of problem (24), the explicit Richardson method can be used.

This leads to the iterative scheme

(3.6) u™! = (1« ASOUT , neN
If X\ denotes the general eigenvalue of Sy the scheme is stable provided we choose At

such that

-2Re)\
3.7 0 < At < inf[ ]
NN

Within the stability region we have p(I + AtSy) <1 where p denotes the spectral radius.
In order to speed up the convergence we experimentally find At* such that
p(l + At*Sy) attains its minimum inside the interval of stability. In general At* is not

available. 'We use it here only to compare preconditioners. The same experiments are

made for the preconditioned schemes, ie.:

(38) u™l = (1 + AZ DY + AtSYu”
(3.9) u™l = (@ + AZ, DY) + ASHu”

~

where Zy and Zy are respectively, the full matrix proposed in {DF] and the tridiagonal
matrix given by (3.4).
Both the schemes (3.8) and (3.9) converge to the same solution of (3.6). The

results of these experiments are reported in Tables 3-2, 3-3, and 3-4

N Maximum At for Stability At* p Corresponding to At*
§ 05461 02724 9817

16 .01836 009120 9919

24 .009232 .005244 9939

32 005138 002521 9966

Table 3-2 Minimum spectral radius of the unpreconditioned amplification matrix
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N Maximum At for Stability At* p Corresponding to At*
8 1.281 7810 2190
16 1.275 7787 2213
24 1.274 7783 2217
32 1.274 7782 2218

Table 3-3 Minimum spectral radius of the preconditioned matrix: case of Z,.

N Maximum At for Stability At* p Corresponding to At*
8 7685 5552 4448
16 6381 3190 7112
24 4258 2129 .8465
32 3210 1605 9043

~

Table 3-4 Minimum spectral spectral radius of the preconditioned matrix : case of Zy,

We also considered the second order Runge-Kutta scheme. This leads to the iterative

scheme

' a2
(3.10) u™l = (1 4 AtS + 3 Slzq)u“ , neN
In this case the stability restriction on At is given by

(3.11) ABIN4 + 4 APReN) N2 + 8At(Re))? + 8ReX < 0.

for all eigenvalues, \, of SN. We obtained results that were qualitatively analogous to

that of Tables 3-2, 3-3, and 3-4.
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4. ANALYSIS IN TWO DIMENSIONS

In two dimensions we will consider the following steady state problem on the square

A ={(xy): -1 € x €1, -1 €y ¢ 1} with homogeneous boundary conditions at x = 1,

and y = 1.

4.1) u +u = f
u(xy,0) = u, xy)eA
u(Ly,t) = ux,1,t) = 0. t2>0

The essential idea in obtaining a pseudo-spectral approximation to (4.1) is the same as it
was in 1l-dimension. That is, to approximate spacial derivatives by constructing a global
interpolant through discrete points. To obtain the Chebyshev pseudo-spectral approximation
we take as these points X =y = cos nj/N for j = 1,.2,.,N. This means that we must
interpolate at the N2 points (xi,yj) for ij = 12,.,N. Consequently, the Chebyshev
derivative operator for this problem can be represented by the N2 x N? matrix Sl(qz) +
P{SN(Z)P, where S&z) is a block diagonal matrix whose blocks are each equal to Sy and P
is a permutation matrix. If one orders the N? points (xi,yj) by rows then quz)
corresponds to ‘the derivative in the x-direction and P is constructed so that PtS&,z)P
corresponds to the derivative in the y-direction.  Without preconditioning Sg‘) + Pt S&Z)P
is ill-conditioned.

As we saw in section 3 ZD is a good preconditioner for Sy Thus, a natural
approach to finding a preconditioner for Sg,z) + P! Sg,z)P is to try Z@D@ + pzAOD@pP,
where Z® and D@ are N2 x N? block diagonal matrices whose blocks are the N x N
matrices Z and D, respectively.

To analyze the behavior of the eigenvalues of the preconditioning matrix, we define
as the generic eigenvalue of the preconditioned matrix, py = m?xlxi|/m}n|xi|(i =1,2,..N?),
Oy Is the maximum o such that Re)l»o, and ry is the minimum r such that |x-1]<r.
In particular, ry and oy give us an idea of the location of the eigenvalues. (See figure

4-1 below.)
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> Re X

Figure 4-1

Numerical experiments performed for N = 4,6,8 are summarized in Table 4-1

N AN N N

4 1.530 530 1.000

6 1.552 589 1.000

8 1.560 622 1.000
Table 4-1

Although the eigenvalues of this preconditioned matrix, (Z@p? s PtZ(Z)D(Z)P)'l(S(%I) +
P' S(?P), are well behaved the matrix is full and thus difficult to invert. Another
approach to constructing a preconditioner is to substitute in Z@Op®@ + ptzZADOPp the
tridiagonal matrix 2 defined by (24) in place of Z. We will denote this new N* x N
matrix by E(Z)D(z) + Pt é(Z)D(Z)P. This matrix represents a finite difference scheme

depending on seven points as illustrated by the stencil in Figure 4-2.
® (i+1))

. o o e
(132) (-1) Q) Gi+1)

® (1))
® (i-2j)

Figure 4-2
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Results similar to those presented in Table 4-1 are prsented in Table 4-2 for

Z®p®@ . ptz@p@p.

N pN rN ON

4 2.206 980 897

6 5_;'026 1.453 488

8 8.494 1.602 306
Table 4-2

Although py; corresponding to Z@p?D 4+ pt ZAODIP increases more quickly than Px
corresponding to yAC) DI P‘Z(Z)D(z)P, the matrix can be inverted more efficiently. This

is because 2(2)D(2) + P Z@D@P is a banded matrix (with N lower codiagonals and 2N
upper codiagonals).

Another preconditioner that we considered was of the form

ZAptzApd®@ + P'DOp).
As in the 1-dimensional case, if the steady-state solution is to be found, the explicit
Richardson method can be used. We experimentally find At* such that p(I + At*W,)
attains its minimum inside the region of stability. The same experiments are made for the

preconditioned matrices. The results of the experiments are reported in Tables 3-3, 3-4,

and 3-5.
N Maximum At for Stability At* p Corresponding to At*
4 1509563 07547812 95248009
6 05228855 02614427 9715761
8 0273053 01365251 9817108
10 01944351 009721750 9810511

Table 4-3 Minimum spectral radius of the unpreconditioned amplification matrix
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N Maximum At. for Stability At* p Corresponding to At*
4 9879928 7172827 6693591
6 9094622 6584506 8027519
8 7200746 4954113 8715243
10 6038381 3623029 .8995660

Table 4-4 Minimum spectral radius of the preconditioned matrix:
Case of ZP' Z P(Dy + P' DP)

N Maxiumum At for Stability At* p Corresponding to At*
4 1.009613 6946138 3763489
6 815170 6798409 6681257
8 7685055 6870439 37895085

Table 4-5 Minimum spectral radius of the preconditioned matrix:
Case of iNDN + Pt iNDNP

We also considered the second order Runge-Kutta scheme, and we obtained results
that were qualitatively analogous to those of Tables 4-3, 4-4, and 4-5.

We applied the Richardson schemes in the unpreconditioned version and in the
preconditioned versions using the preconditioners :’\ZNDN + PtAZNII\)NP and
Z\P'ZP(Dy + PDGP), to find the solution of the model problem

U=+ - osin(e(x+1)) + osin(o(y+1)
u(xy,0) = sin(y-1)sin(x-1)
u(-Ly,t) = ux,-1,t) = 0
of the type in (4.1). We used the optimal At* listed in tables 4-3, 4-4, and 4-5. Using

the L, norm we considered the scheme to converge when the exact error stabilized. We

also calculated global CPU times. The experiments were performed on the IBM 3081 and

the results are reported in Tables 4-6,4-7, and 4-8.
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N No. of Iteration Error CPU Time for Convergence
for Convergence (in seconds)

4 122 12405 x 107 21

6 400 104182 x 1073 1.33

8 900 47112 x 10 582

Table 4-6 Unpreconditional Euler

No. of Interation Error CPU Time for

CPU Time for Construction
for Convergence

Convergence of Preconditioner and
Finding LU Decomposition
of Preconditioner

11 1246626 x 1071 03 .00
34 10400 x 1073 26 04
69 4709596 x 107 1.17 11

~

Table 4-7 Preconditioned Richardson Case of ZD + P Z,,DP

No. of . Interations Error CPU Time for CPU Time for
for Convergence Convergence Construction of
. Precondtioner and
Finding LU
Decomposition of
Preconditioner
32 12468 x 101 .09 00
173 .104255 x 1073 1.10 00
263 4709613 x 107 331 00

Table 4-8 Precondition Richardson Case of ZP' Z P(D + P* DP).



-18-

[DF] D. Funaro, "A preconditioning matrix for the Chebyshev differencing operator”,
Istituto Di Analisi Numerica del Consiglio Nazionale Delle Ricerche Corso C.
Alberto, 5-27100 PAVIA (lItaly) N. 509.



